eolearn.mask.masking
Module for creating mask features
- class eolearn.mask.masking.JoinMasksTask(input_features, output_feature, join_operation='and')[source]
Bases:
ZipFeatureTask
Joins together masks with the provided logical operation.
- Parameters:
input_features (FeaturesSpecification) – Mask features to be joined together.
output_feature (Feature) – Feature to which to save the joined mask.
join_operation (Literal['and', 'or', 'xor'] | Callable) – How to join masks. Supports ‘and’, ‘or’, ‘xor’, or a Callable object.
- class eolearn.mask.masking.MaskFeatureTask(feature, mask_feature, mask_values, no_data_value=nan)[source]
Bases:
EOTask
Masks out values of a feature using defined values of a given mask feature.
As an example, it can be used to mask the data feature using values from the Sen2cor Scene Classification Layer (SCL).
Contributor: Johannes Schmid, GeoVille Information Systems GmbH, 2018
- Parameters:
feature (SingleFeatureSpec) – A feature to be masked with optional new feature name
mask_feature (Feature) – Masking feature. Values of this mask will be used to mask values of feature
mask_values (Iterable[int]) – List of values of mask_feature to be used for masking feature
no_data_value (float) – Value that replaces masked values in feature. Default is NaN
- Returns:
The same eopatch instance with a masked array
- eolearn.mask.masking.apply_mask(data, mask, old_value, new_value, data_type, mask_type)[source]
A general masking function
- Parameters:
data (ndarray) – A data feature
mask (ndarray) – A mask feature
old_value (float) – An old value in data that will be replaced
new_value (float) – A new value that will replace the old value in data
data_type (FeatureType) – A data feature type
mask_type (FeatureType) – A mask feature type
- Return type:
ndarray