eolearn.features.utils
Utilities for EOPatch feature modification
- class eolearn.features.utils.ResizeParam(value)[source]
Bases:
Enum
Descriptors of spatial-resizing parameter options.
- NEW_SIZE = 'new_size'
- SCALE_FACTORS = 'scale_factors'
- RESOLUTION = 'resolution'
- class eolearn.features.utils.ResizeMethod(value)[source]
Bases:
Enum
Methods available for spatial resizing of data.
- NEAREST = 'nearest'
- LINEAR = 'linear'
- CUBIC = 'cubic'
- class eolearn.features.utils.ResizeLib(value)[source]
Bases:
Enum
Backends available for spatial resizing of data.
- PIL = 'PIL'
- CV2 = 'cv2'
- eolearn.features.utils.spatially_resize_image(data, new_size=None, scale_factors=None, spatial_axes=None, resize_method=ResizeMethod.LINEAR, resize_library=ResizeLib.CV2)[source]
Resizes the image(s) according to given size or scale factors.
To specify the new scale use one of new_size or scale_factors parameters.
- Parameters:
data (ndarray) – input image array
new_size (tuple[int, int] | None) – New size of the data (height, width)
scale_factors (tuple[float, float] | None) – Factors (f_height, f_width) by which to resize the image
spatial_axes (tuple[int, int] | None) – Which two axes of input data represent height and width. If left as None they are selected according to standards of eo-learn features.
resize_method (ResizeMethod) – Interpolation method used for resizing.
resize_library (ResizeLib) – Which Python library to use for resizing. Default is CV2 because it is faster, but one can use PIL, which features anti-aliasing.
- Return type:
ndarray