eolearn.core.constants¶
This module implements feature types used in EOPatch objects
-
class
eolearn.core.constants.
FeatureType
(value)[source]¶ Bases:
enum.Enum
The Enum class of all possible feature types that can be included in EOPatch.
- List of feature types:
DATA with shape t x n x m x d: time- and position-dependent remote sensing data (e.g. bands) of type float
MASK with shape t x n x m x d: time- and position-dependent mask (e.g. ground truth, cloud/shadow mask, super pixel identifier) of type int
SCALAR with shape t x s: time-dependent and position-independent remote sensing data (e.g. weather data,) of type float
LABEL with shape t x s: time-dependent and position-independent label (e.g. ground truth) of type int
VECTOR: a list of time-dependent vector shapes in shapely.geometry classes
DATA_TIMELESS with shape n x m x d: time-independent and position-dependent remote sensing data (e.g. elevation model) of type float
MASK_TIMELESS with shape n x m x d: time-independent and position-dependent mask (e.g. ground truth, region of interest mask) of type int
SCALAR_TIMELESS with shape s: time-independent and position-independent remote sensing data of type float
LABEL_TIMELESS with shape s: time-independent and position-independent label of type int
VECTOR_TIMELESS: time-independent vector shapes in shapely.geometry classes
META_INFO: dictionary of additional info (e.g. resolution, time difference)
BBOX: bounding box of the patch which is an instance of sentinelhub.BBox
TIMESTAMP: list of dates which are instances of datetime.datetime
-
DATA
= 'data'¶
-
MASK
= 'mask'¶
-
SCALAR
= 'scalar'¶
-
LABEL
= 'label'¶
-
VECTOR
= 'vector'¶
-
DATA_TIMELESS
= 'data_timeless'¶
-
MASK_TIMELESS
= 'mask_timeless'¶
-
SCALAR_TIMELESS
= 'scalar_timeless'¶
-
LABEL_TIMELESS
= 'label_timeless'¶
-
VECTOR_TIMELESS
= 'vector_timeless'¶
-
META_INFO
= 'meta_info'¶
-
BBOX
= 'bbox'¶
-
TIMESTAMP
= 'timestamp'¶
-
is_timeless
()[source]¶ True if FeatureType doesn’t have a time component and is not a meta feature. False otherwise.
-
contains_ndarrays
()[source]¶ True if FeatureType stores a dictionary of numpy.ndarrays. False otherwise.
-
class
eolearn.core.constants.
FeatureTypeSet
[source]¶ Bases:
object
A collection of immutable sets of feature types, grouped together by certain properties.
-
SPATIAL_TYPES
= frozenset({<FeatureType.MASK: 'mask'>, <FeatureType.VECTOR: 'vector'>, <FeatureType.DATA_TIMELESS: 'data_timeless'>, <FeatureType.DATA: 'data'>, <FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.VECTOR_TIMELESS: 'vector_timeless'>})¶
-
TIME_DEPENDENT_TYPES
= frozenset({<FeatureType.MASK: 'mask'>, <FeatureType.VECTOR: 'vector'>, <FeatureType.LABEL: 'label'>, <FeatureType.DATA: 'data'>, <FeatureType.SCALAR: 'scalar'>, <FeatureType.TIMESTAMP: 'timestamp'>})¶
-
TIMELESS_TYPES
= frozenset({<FeatureType.SCALAR_TIMELESS: 'scalar_timeless'>, <FeatureType.DATA_TIMELESS: 'data_timeless'>, <FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.LABEL_TIMELESS: 'label_timeless'>, <FeatureType.VECTOR_TIMELESS: 'vector_timeless'>})¶
-
DISCRETE_TYPES
= frozenset({<FeatureType.LABEL: 'label'>, <FeatureType.LABEL_TIMELESS: 'label_timeless'>, <FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.MASK: 'mask'>})¶
-
META_TYPES
= frozenset({<FeatureType.META_INFO: 'meta_info'>, <FeatureType.TIMESTAMP: 'timestamp'>, <FeatureType.BBOX: 'bbox'>})¶
-
VECTOR_TYPES
= frozenset({<FeatureType.VECTOR: 'vector'>, <FeatureType.VECTOR_TIMELESS: 'vector_timeless'>})¶
-
RASTER_TYPES
= frozenset({<FeatureType.MASK: 'mask'>, <FeatureType.LABEL: 'label'>, <FeatureType.SCALAR_TIMELESS: 'scalar_timeless'>, <FeatureType.DATA_TIMELESS: 'data_timeless'>, <FeatureType.DATA: 'data'>, <FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.SCALAR: 'scalar'>, <FeatureType.LABEL_TIMELESS: 'label_timeless'>})¶
-
DICT_TYPES
= frozenset({<FeatureType.MASK: 'mask'>, <FeatureType.VECTOR: 'vector'>, <FeatureType.LABEL: 'label'>, <FeatureType.META_INFO: 'meta_info'>, <FeatureType.SCALAR_TIMELESS: 'scalar_timeless'>, <FeatureType.DATA_TIMELESS: 'data_timeless'>, <FeatureType.DATA: 'data'>, <FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.SCALAR: 'scalar'>, <FeatureType.LABEL_TIMELESS: 'label_timeless'>, <FeatureType.VECTOR_TIMELESS: 'vector_timeless'>})¶
-
RASTER_TYPES_4D
= frozenset({<FeatureType.DATA: 'data'>, <FeatureType.MASK: 'mask'>})¶
-
RASTER_TYPES_3D
= frozenset({<FeatureType.MASK_TIMELESS: 'mask_timeless'>, <FeatureType.DATA_TIMELESS: 'data_timeless'>})¶
-
RASTER_TYPES_2D
= frozenset({<FeatureType.LABEL: 'label'>, <FeatureType.SCALAR: 'scalar'>})¶
-
RASTER_TYPES_1D
= frozenset({<FeatureType.SCALAR_TIMELESS: 'scalar_timeless'>, <FeatureType.LABEL_TIMELESS: 'label_timeless'>})¶
-
-
class
eolearn.core.constants.
FileFormat
(value)[source]¶ Bases:
enum.Enum
Enum class for file formats used for saving and loading EOPatches
-
PICKLE
= 'pkl'¶
-
NPY
= 'npy'¶
-
GZIP
= 'gz'¶
-
-
class
eolearn.core.constants.
OverwritePermission
(value)[source]¶ Bases:
enum.Enum
Enum class which specifies which content of saved EOPatch can be overwritten when saving new content.
Permissions are in the following hierarchy: - ADD_ONLY - Only new features can be added, anything that is already saved cannot be changed. - OVERWRITE_FEATURES - Overwrite only data for features which have to be saved. The remaining content of saved
EOPatch will stay unchanged.
OVERWRITE_PATCH - Overwrite entire content of saved EOPatch and replace it with the new content.
-
ADD_ONLY
= 0¶
-
OVERWRITE_FEATURES
= 1¶
-
OVERWRITE_PATCH
= 2¶