Source code for eolearn.features.local_binary_pattern

Module for computing the Local Binary Pattern in EOPatch

Copyright (c) 2018-2019 Hugo Fournier (Magellium)
Copyright (c) 2017-2019 Matej Aleksandrov, Devis Peresutti (Sinergise)

This source code is licensed under the MIT license found in the LICENSE
file in the root directory of this source tree.

import skimage.feature
import numpy as np

from eolearn.core import EOTask, FeatureType

[docs]class LocalBinaryPatternTask(EOTask): """ Task to compute the Local Binary Pattern images LBP looks at points surrounding a central point and tests whether the surrounding points are greater than or less than the central point The task uses skimage.feature.local_binary_pattern to extract the texture features. """ def __init__(self, feature, nb_points=24, radius=3): """ :param feature: A feature that will be used and a new feature name where data will be saved. If new name is not specified it will be saved with name '<feature_name>_LBP'. Example: (FeatureType.DATA, 'bands') or (FeatureType.DATA, 'bands', 'lbp') :param nb_points: Number of point to use :type nb_points: int :param radius: Radius of the circle of neighbors :type radius: int """ self.feature = self._parse_features(feature, default_feature_type=FeatureType.DATA, new_names=True, rename_function='{}_LBP'.format) self.nb_points = nb_points self.radius = radius if nb_points < 1 or radius < 1: raise ValueError('Local binary pattern task parameters must be positives') def _compute_lbp(self, data): result = np.empty(data.shape, dtype=float) for time in range(data.shape[0]): for band in range(data.shape[-1]): image = data[time, :, :, band] result[time, :, :, band] = skimage.feature.local_binary_pattern(image, self.nb_points, self.radius, method='uniform') return result
[docs] def execute(self, eopatch): """ Execute computation of local binary patterns on input eopatch :param eopatch: Input eopatch :type eopatch: eolearn.core.EOPatch :return: EOPatch instance with new key holding the LBP image. :rtype: eolearn.core.EOPatch """ for feature_type, feature_name, new_feature_name in self.feature: eopatch[feature_type][new_feature_name] = self._compute_lbp(eopatch[feature_type][feature_name]) return eopatch